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ABSTRACT

The R.P.I. Martian Roving Vehicle requires an autonomous

obstacle detection and path selection system. A laser rangefinder

will be used to determine the locations of a number of discrete

points at distances ofi 3 to 30 meters from the vehicle. The system

might measure angles, ranges or a combination of both types of

measurements.

The slope of the terrain is very important in the selection

of a navigable path. Four, or more, terrain data points may be used

to calculate a stochastic estimate of the gradient of a small area

of the Martian surface in the vicinity of the points. The accuracy

of this estimate is influenced by the point locations as well as

the measurement errors.

The accuracy of stochastic gradient estimates is analyzed

for two stereo-measurement systems, one measuring angles, and the

other ranges. These are compared with a non-stereo system using a

combination of measurements. The accuracy of the discrete point

location calculations is also discussed.

The non-stereo system is shown to be the mostcompatible

with present laser rangefinder technology.

xi



PART 1

INTRODUCTION

The roundtrip communication time from Mars to Earth is over

40 minutes. Therefore, the R.P.I. Martian vehicle's terrain modeling

and path selection system must be autonomous.

Two points along the path of the vehicle determine an in-

path slope, while those across the path determine a cross-path slope.

In the 3 to 30 meter range, however, inaccuracy in measurement can

introduce very large errors in the computed slopes, which are the

main factors in path selections. There are some threshold values for

these slopes and heights above which a change of path is required.

One system discussed in this report, referred to as stereo

angles, uses three angular measurements in elevation and azimuth to

locate a terrain point. Another system, called stereo range, uses

three range measurements. These two systems are compared with a non-

stereo system which uses one range, and two angular measurements in

elevation and azimuth. (23

A stochastic estimate of the gradient of the terrain may

be computed using four or more terrain measurement points. The ac-

curacy of this estimate depends on the terrain point locations and

on the measurement errors. Since the R.P.I. vehicle will probably

use a laser system to measure the terrain point coordinates, the

accuracy requirements can be compared with the limits of present

laser rangefinder technology. 31

1



PART 2

METHOD OF APPROACH

The gradients or maximum slopes of the terrain in front of

the vehicle are determined by measuring four or more points on the

Martian surface.

A. Transformation of Coordinate Systems

1. Stereo Angles

The elevation angles o( and 3 , and the azimuthal angle I

are measured with respect to the coordinate system ht, at, bi fixed

to the vehicle as shown in Figure 1. A laser is located at point T

which is 3 meters in height. The elevation angle P of the transmitted
light beam is measured at T from the horizon to the terrain point U.

The elevation angle o( of the received beam is measured at a point

L meters from the top of the mast. Some type of scanning detector

is assumed in -the measurement of the angle o( . The angle e is the
azimuthal angle of the transmitted beam.

From the geometry, with a senRor mast height of 3 meters,

the terrain point coordinates h', at, b* are found in terms of C<,

(j, 0 , and L.

he = 3- L tan (la)
(tan ( -tan (<)

L sin 8
(tan P-tan )( b)

bi = L cos (Ic)
(tan P -tano( )

The hf, al, be coordinate system which is fixed to the vehicle

2
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Figure 1 Stereo Angles System Coordinates



may be transformed to a reference system, h, a, b formed by the local

vertical, the vehicle heading and an axis perpendicular to both. It

is assumed that the vehicle rolls with an anglep and pitches with an

angleI about the reference frame, h, a, b. In matrix form this trans-

formation is:[(41

=C() B() a". (2a)

where

cos f -sin 6 0
C( ) = sinp cos,% 0 (2b)

0 1

and

cos 0 sin

B( ) 0 1 0 (2c)
I-sin 0 cos

2. Stereo Range

The quantities M,N and K are measured with respect to the

coordinate system h', a', b' which is fixed to the vehicle as in Fig. 2.

The measurement M is twice the range to the terrain point U from the

transmitter and receiver at T on top of the sensor mast.

M = 2 R (3a)

The measurement 1N is the sum of the ranges from the transmitter at T

to the terrain point U and from this point back to. a receiver at a

vertical distance L meters from the transmitter.

N = R + P (3b)

The measurement K is the sum of the ranges from the transmitter at T

to the terrain point U and from this point back to another receiver



T Measurements: M = 2 R

N=R+P

K=R+Q

R

L

h'

Vehicle Heading

bt

U /Terrrin
SPoint

at

Figure .2 Stereo Range System Coordinates
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at a horizontal distance J meters frot the transmitter.

K = R + Q. (3c)

From the geometry the coordinates of the terrain points

are found in terms of M,N,K,L and J.

L N(N-M)h'= 3 - - + (4a)2 2L

K(M-K) +a'= +-- (4b)2J N

M2 L2  2 N(N-M)_ K(M
bt =  4 4 4 2 2

K2(M-K)2 N2 (N-M)2  (4c)

4J2  4L2

The coordinate transformation from the h', at, b' system to the non-

rotating system h, a, b has been shovn in equation (2).

3. Non-stereo System 2

The quantities R, , and G are measured with respect to

the h', a', b' coordinate system as in Figure 3.

From the figure

h' = 3 - R sine (5a)

a' = R coso sin , (5b)

b' = R cos cos() (5c)

Again the transformation to the non-rotating coordinate system is

given by equation (2).

B. Determinations of Sloves and Gradients

A number of the measurement points from a small area of the

Martian surface, perhaps 1 meter by 1 meter, can be used to determine

a plane in space. This may be written as
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h = ax1 + bx2 + x3-1 (6)

where the parameters x1 and x2 are constants. Equation (6) is

differentiated to give

)h )hh = da + 7db= x1 da +_x2 db

where

= = cross-path slope

2  = in-path slope L5,6

The gradient of the plane is defined as

s = (x2 + x2 (7)
1  2

The gradient is the maximum slope of the terrain plane iep-

resenting the local terrain feature. If the magnitude of the gradient

is less than some critical value, probably about 25 degrees, the terrain

will be considered passable.

By using the measurement points to locate a plane, Equation

(6) nay be written as

h i = aix1 + bix2 + x3 (8)

where hi, ai and b. can be found either fromol, ,G and L for a stereo

angles system using Equations (1) and (2),from M,N,K,L and J for a

stereo range system using Equations (4) and (2) or from R, and I

for the non-stereo system using Equations (5) and (2).

Three points theoretically determine a plane. To obtain greater

accuracy, however, four or even six points can be used to determine

the gradient. A number of adjacent planes, each covering a small area,

may be modeled to construct a complete picture of the terrain in front



of the vehicle.

PART 3

ESTIMATION OF SLOPES AND THEIR COVARIANCES

This section includes the solutions of a least squares error

estimate and the covariance matrices when n>3.

A. Least Square Estimate of the Slopes

A least square error estimate can be performed minimizing

n

(hi-hi 

assuming ai = ai and b = b. are true in Equation (8). The value hi

is the actual measured height of the terrain point and hi is the cor-

responding height in the modeled plane.

Equation (8) is written in matrix form as

h = Ax (10)

or h a b 1

h2  a2 b2  1 x

2
*. . . 2

h a b 3 n=4 or 6nJ L n n j -

The matrix x must be determined in such a way that Equation (9)

is minimized. Through use of the Gram-Schmidt orthogonalization procedure

the least sguare estimate of x becomes 171

A - -

x = (AiA) A h (11)

B. Perturbation of the Variables

The matrix A in the least square estimate above is assumed

to be completely deterministic.[8]The determination of h, a, and b

involves errors due to uncertainties in the measured angles or ranges.
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The symbol S is used to denote a perturbation.
1. Stereo Angles

Then 4h, Sa and b can be found in terms of$, , ,

o(, d and SL. From Equations (1) and (2) the perturbations in h, a

and b are determined as follows: 2

fh
a =D(h', a', b,, )

b

L L (12a)

where
G(o, ,8,L) =
a

L tanQ sec 2o( L tanC sec2 Q 0 tan(

(tan -tanc )2 (tan -tan(<) 2  (tanO -tan d)

L sec2 sin) L sec 2 sin@ L cose sine

(tan0 -tan o) 2  (tan P -tano) 2 (tan~ -tan o) (tan P -tan o()

L sece sc 2( cos -L sine Cos B

(tane -tan d )2 (tan -tan. )2 (tan -tanC() (tan -tan.(

(12b)

The derivation of the matrix D is shown in Appendix A.

2. Stereo Range

The quantities Jh, 9a, and Sb can be found in terms of9,

, M, SN, N, K, SL and jJ. From Equations (2) and (4) the perturbations

in h, a and b are determined as follows:

a D(ht. at, b',0,J) + C(O )B(I )Gr(M,N,K,L,J)

b (13
J (13a)



where.
Gr (M,N,K,L,J) =

-N 0 N-M 0 1 N 4 0
2L 2L 2 2L

K M-2K 1 K(M-K)

2J 2J 2 2J2

g3i 32 33 934 g3 5

and
M N K K2 (M-K) N2 (N-M)

931 2 2 2 2J2  2L2

2b

2N-M (211- 2M+NM2

g32 = 2
32 2 2L

2b'

2K-M (2K3-3K2+M2)

g33 = 2 2J
2b'

934 =  .2L3  2

2b'

K2(M-K)2 o

g35 2J3 2 (1 3b)

2b'

For the non-stereo system the matrix G becomes [2]

(-sin() (-Rcos ) O

(cos sine ) (-Rssin sine) (Rcos cose)

S(COs COS@) (-Rsin cos ) (-Rcosp sine ) (14)



C. The Covariance Matrix of the Variables

The covariance matrix of the variables may be defined as

Sh [Sh Sa Sb
Y = E 1 a

bj

The symbol E denotes expected value.

1. Stereo Angles System

If , , 3 , , and L are not correlated, then from

Appendix B the following relation is obtained.

Y a D DT
a [E )2 E )2

E 2 0 0 0

0 E( () 2  o TTT
+ C B G 2 0 G B C (16)a 0 0 E(~e) a

o o 0 E(L. 2

2he variances of h, a and b are the diagonal elements of

the matri:. Y in Equation (15). The standard deviation' of each of these

quantities is the square root of its variance. From Equations (15) and

(16) the standard deviations of h, a and b can be computed in terms

of those of , , S0(,,P ,and L for each point. These are kno-wn

quantities which depend on the accuracy of the measuring devices.

2. Stereo Range System

If , M, S N, S K, L and J are uncorrelated I93then

by the same method used to derive Equation (16) the following is

obtained.
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Y D E) DT
r 0 2

E(SM) 2  0 0 0 0O

o E(SN) 2  0 0 0
+ CBG 0 0 E( .K)2  0 0 G TBTC

0 0 0 E(JL)2 0

0 0 0 0 E(5J) 2  (17)

The standard deviations of h, a and b can be computed in

terms of those of M, , M, N, K, L,and J for each point. Equations

(16) and (17) include the matrix G which involves all the measured

quantities. Therefore, the standard deviations in h, a and b depend on

the locations of the data points in relation to the vehicle as well as

on the accuracies of these measurements.

D.,Covariance Matrix of the Slopes

Equation (10) may be rewritten to include the perturbations

in h, A and x.

h= fix (18a)

h = h +Sh (18b)

A = + SA (18c)

x = x + x (18d)

The original equation, (10), is subtracted from (16a) to

obtain

h T x + dA x (19)

The estimate of the slope is

S x = F( h- SA x) (20)
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Equations (19) and (20) are'compared to Eq.(10) leading to

the result that

F .=( AT )'1 A (21)

The covariance matrix of the slopes is determined in Appendix C

as

E( ) = FE(Shh T ) - E(AxT) - E(h(Ax) ) + E(Ax($A) )F (22)

where

h I  ( alx1 + b 2 )

Sx x2 h =h2 1Ax = ( a271 Sb2 2)

h (a +Ib i)n n n n2 (23)

The matrix A is in terms of a and b, Therefore, Sh and JA

can be expressed as functions of ,V, O ,VPand L for the stereo

angles system, using Eq, (12). Thus Eq. (22) can be evaluated as

shown in Appendix C.

For the stereo range system Sh and SA are expressed as

functions of M, 6,M, SK,$N, L andJ using Equation (13). Then

the covariance matrix of the slopes is determined in Equation (22).

From Equations (21) and (22) itis seen that the covariance

matrix of the slopes also depends on the matrix A which is determined

by the measured'locations of the points. As a result the estimate of

the gradient is expected to be influenced by the data point spacing.

E. Variance of the Gtadient

The symbol g denotes the standard deviation of the gradient
sg

Sg. Equation (7) is differentiated to get

dSg = (x + x2) x dx + (x +x2) x dx (24)1 2 1 1 1 2 2 2
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From Equation (24) the variance of the gradient becomes 101

2-2- 2 2. -- 2
Vxi +2 - + 2 (25)

2 -2 1 -2 -2 12 -2 -2 2
(x1  + 2 ) (x1  + X2 ) (x + x

where 2 = )2
1

x1x22 E x

These covariances are found from Equation (22).

The value of sg is an estimate of the accuracy of the estima-

ion of the gradient. If a normal distribution is assumed, then the true

value of the random variable, in this case the gradient, will lie within

one standard deviation of the estimated value 68% of the time."9'The

actual gradient will be within two standard deviations of the estimate

95% of the time.

For example, if the estimate of gradient is 25 and 30
sg

then it is only a 68% probability that the actual gradient of the
o

terrain is between 22 and 28 . If the (3timated gradient is near the

maximum passable value, the magnitude of - is very important in

the operation of the path selection algorithm.

The slope covariances depend on the data point locations in

relation to the vehicle and to each other. The standard deviation of

gradient depends on the slope covariances, so( will also be a
8g sg

function of the data point locations. Varying the spacing of these

points changes the covariance matrix and therefore affects s
sE



F. Determination of the Gradient

Once the value of the cross-.path and in-path slopes are

determined from the least squares estimate, the gradient can be

calculated from Eq. (7). The vehicle uses the estimate of gradient

in its path selection algorithm[11to select a safe course.

PART 4

DISCUSSION OF NUMERICAL RESULTS

It is assumed that the vehicle will have some type of scan-
(113

ning apparatus to let the laser beam arrive at various terrain points.

The h', a' and b' coordinates will be computed either by stereo angles

or stereo ranges and then transformed to the non-rotating coordinate

system h, a and b as described in section 2A.

Four or more data points are used to model a plane and to

calculate a least squares estimate of the gradient as outlined in Part 3.

The accuracy of this estimate depends on the magnitudes of the cross-

path and in-path slopes, the distance of the data points from the

vehicle, the spacing between the points and the roll and pitch angles.

It is assumed that the measurements Xand I will provide
standard deviations C and of about 1 .2 By assuming reasonable

data point spacing, previous research(2]has shown thats is approx-
sg

imately 300 if U =J( =1. This value for the standard deviation in

0 O
gradient is unacceptable. It is desired that s be less than 2 or 3

for terrain within the 3 to 30 meter range.

If a rapid-scan laser is used, the effect of and can be

reduced. If the time between the measurement of adjacent data points
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is on the order of milli-seconds, as it would be with a rapid-scan

laser, then the data points are measured almost instantaneously compared

to the vehicle motion which is on the order of seconds. All four points

will then have the same values of 0 and . The points will retain their

relative position when they are.transformed to the non-rotating coor-

dinate system by Eq. (2). Therefore, the planes can be modeled in the

h', a', bt coordinate system and then transformed to the h,a, b coor-

dinate system. By letting#= 0= 00 in Equations (12) and (16), or (13)

and (17), then the result is that h' = h, a' = a, and b' = b in those

equations. The additive effect of the standard deviation in and

will be about 1 because with the rapid-scan laser the effects of q

and can be added to the factor -sg from the modeled plane afterward

since the entire plane is transferred at the same time to the non-rotating

coordinate system. As a result, in the calculation of d the substitution

= 0 is made in Equati6ns (16) and (17).

The maximum magnitude of navigable slope is assumed to be 25 .

Relative slopes between +500 and -500 are possibly navigable as shown

in Figure 4. The following analysis considers relative slopes within

these limits.

1. Stereo Angles System

It is assumed that the scanning mechanism can provide any

desired data point spacing at distances from 3 to 30 meters from the

from the vehicle. The data point spacing also depends on terrain ir-

regularities, however, a flat terrain is assumed at the start.

The distance L in Fig. 1 is assumed to be 1.0 meter. This is

the most reasonable value for a 3 meter sensor mast height. A larger

value of L can give smaller errors in measurement. But, as L is
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increased beyond one meter, the vehicle's ability to observe negative

slopes is decreased. Also, if the receiver is lower on the mast there

is more chance that the reflected laser beam will be blocked by other

vehicle equipment. 1

The standard deviations (e, qand e are set equal to 1 ',

a reasonable value using presently available equipment. 3Then the

data point spacing and the standard deviationL are varied for points

in the 3 to 30 meter range. In order to determine s, the standard

deviations of the measured values and the data point coordinates are

obtained from Eqs. (12), (16), (21), (23) and-(25).

Figure 5 shows a plot of standard deviation in gradient g
sg

vs. distance, b ,from the vehicle for flat terrain with 0 relative

slope having L=0.01m. The dotted lines are for qL=0.005m. Clearly

has an important effect on 9 for the stereo angles system,

especially at close range where decreasing Lfrom O.01m to 0.005m

reduces the value of Ts by fifty percent. As expected, larger data

point spacing gives smaller values for the standard deviation in

gradient. At close range, data point spacing of 0.66m or less is

required because 0.66 meters is the width of the widest navigable

crevice.C13At 4 meters distance from the vehicle, a spacing of 0.6m

gives =3 and 1.55 with = 0.01m and 0.005m respectively. Sincess L

g is designed to be less than 20, it appears thatL must be about
sTL

0.005 meter or less.

The standard deviation in the distance L (C ) may result
L

from changes in the sensor mast, expansion or contraction due to

temperature changes, or from uncertainties caused by the laser
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transmitter and receiver.

At ranges of 20 to 30 meters, a data point spacing of 1.2 m.

will .b4; adequate to obtain the gradient of the terrain in front of

the vehicle. This terrain would probably be remeasured when the vehicle

moves closer to it. In Fig. 4, at 30 meters with 1.2 meter data point

spacing, the computed results are that the standard deviations for

gradient g. are 2.20 and 1.8 for f= 0.01m and = 0.005m respectively.
s L L

At that range both values of the quantity~ may be acceptable.
sg

Figure 6 shows the plot of±* versus relative in-path slope

from -27 to +500 at a distance of 4 meters from the vehicle. The

vehicle connot measure negative in-path slopes of more than -27 because

the terrain obstructs the line of sight. The cross-path slope, X2, is

set to 0 in Equations (19), (20), (22) and (25). The in-path slope,

o 0

x ,varies from -27 to +50 . The standard deviationser and C are
2 L A

varied in Eq.(16) and the results used in Eqs. (22)and (25) to cal-

culate the quantity sg. In Fig. 6 the data point spacing is 0.6 meter

as required at the 4 meter distance. The stereo angles system estimate

of the standard deviation in gradient f is quite sensitive to the
sg

relative in-path slope.

By reducing the angular standard deviation,, A= = e,

to 6 arc-seconds and maintaining the transmitter-receiver separation

distance standard deviation L at 0.01m, the standard deviation in

gradient rsg is not significantly reduced. If the quantity TL is set

equal to zero and the quantity TA is set equal to i' then rsg has a

maximum value of 2.50 for relative in-path slope of +508 Increasing

the magnitude of (I to 0.001m has a small effect on the value of s g
L89
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Reducing the angular standard deviation to less than 1' will

require additional and more bulky equipment. Accuracy as low as 6 arc-

seconds may not be practical but would improve the resultingT if
as L

is about 0.001 meter.

Figure 7 shows the standard deviation in gradient vs.
sg

0 a
relative in-path slope from -6 to +50 at a distance of 20 meters from

the vehicle. The terrain obstructs the view of the in-path slopes for
o

more than -6 relative slopes at 20 meters. For this graph the data

point spacing is 1.2 meters. At 20 meters the standard deviationc
sg

increases drastically with increasing relative in-path slope. To obtain

the quantityTsg less than 30 for all relative in-path slopes up to 500

the standard deviationesL should be less than 0.001m and T less thanLL A

6". Larger values of either standard deviation have the results of g

being much greater than 36 for nearly all positive relative in-path

slopes.

Figure 8 shows the standard deviation in gradient vs. relative

cross-path slopes from 0 to +50 for distances of 4 and 20 meters with

data point spacings of 0.6 meters and 1.2 meters respectively. Cross-

path slopes from 0 to -50 will give the same results because of the

symmetry of the system. If the standard deviations AT=1' and = 0.005mA L

or less, the value of sg is less than 2.50 at both distances.

2. Stereo Range System

As in the stereo angles system, it is assumed that the

rapid scan transmitter at T (Fig.2) can provide the desired data point

spacing for flat terrain. The separation distances L and J are both

assumed to be equal to one meter. This is the most reasonable value
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for the vertical separation distance L for the reasons stated previously.

The one meter value is also reasonable for the horizontal separation.

distance J because a larger J will require a.more massive support.

It is assumed that the standard deviations in L and J are

equal since the system configuration is somewhat symmetric in the

horizontal and vertical directions. These uncertainties may result

from changes in the support dimensions and from the laser transmitter

and its 3 receivers.2,1 1

The range standard deviations (M' ', and (j' are all

assumed equal to 2 qR. These standard deviations and the data point

coordinates are employed to calculate the quantity Tsg in Equations

(13), (17), (21) and (25).

Figure 9 shows Gsg vs. distance, b , from the vehicle for

flat terrain with relative slopes = 0 ,and qR = 0.001m. The solid lines

show the quantity qsg when the value of TL = 0- is O.01m and the dotted

lines whenQ= q.= is 0.005m. The standard deviations in gradient g
L J 8g;

for the stereo range system are not sensitive to the standard deviations

in separation distances T and 7. By reducing the quantity L from

0.01m to 0.005 m at a distance of 4 meters with point spacing of 0.6m

and range standard deviation jR= 0.001m, the value of sj decraeses

from 2.3 down to 1.7 .

As expected, larger data point spacing results in smaller

standard deviation in gradient. At close range a 0.6m point spacing

results in the quantity sg= 2.3 when the values of and V L are

0;001m and 0.01m respectively. To obtain standard deviation in gradient

less than 2, L must be less than 0.01m, probably about 0.O05meter.
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At longer range, data point spacing should be increased to a value

greater than one meter. For example, at 20 meters either the spacing

must be greater than 1.2 meters or the range standard deviation R must

be reduced below 0.001m in order to obtain a value of to be less
ag

than 2 degrees.

Figure 10 is a plot of the standard deviation in gradient vs.

relative in-path slope at a distance of 4 meters from the vehicle

having data point spacing of 0.6m. The range of relative in-path slopes

o o
is from -27 to +50 for the same reasons as for the stereo angles

system. In this case sg decreases as relative in-path slope increases

to +500.From the figure it is concluded that to obtain the value of _sg

to be less than 20 for most relative in-path slopes, the magnitude of

must be 0.001m or less and the magnitude ofL must be O.005m or

less.

In Figure 11 the standard deviation in gradient is plotted

against relative in-path slopes at a distance of 20 meters with data

point spacing of 1.2 meters. In this graph the value of the quantity

D

sg increases slightly as relative in-path slope increases to +50 . To
sg

obtain a maximum standard deviation Tsg of 2 when the value ofL is

0.005m, the range standard deviation ' R must be about 0.0005m.

Figure 12 shows the standard deviation in gradient versus

o 0
relative cross-path slopes from 0 to 50 at 4 and 20 meters with data

point spacings of 0.6m and 1.2m respectively. The quantityTR is 0.001m

andV L is 0.01m and 0.005m. Again the value ofiRmust be less than 0.001m

in order to obtain relatively small standard deviation in gradient.
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3. Comparisons-of the Four Point Fit with a Three Point Fit

The gradient of the terrain may be estimated by modeling

a plane containing.three data points. Since 3 points determine a plane

the sum in Eq. (9) reduces to zero. From the three point plane the

cross-path slope, xl, and the in-path slope, x2 , and their covariances

are calculated in-Eqs. (11) and (22). These results are used in Eq.(25)

to compute a standard deviation in gradient d

Comparisons of the accuracy of the gradient estimate for

the three and four point schemes are shown in Figures 13-16. Fig. 13

shows the quantity vs. relative in-path slope at 4 meters for the

stereo angles system with point spacing of 0.6m. For relative in-path

slopes less. than about 10 the 4 point fit is much more accurate. This

is important since over much of its course the vehicle will be measuring

o 0
terrain with relative slope in the -20 to +20 range.

The next graph (Fig.14) shows sg plotted against relative

in-path slope at 20 meters distance with point spacing equal to 1.2m.

In this case the four point stochastic fit is better than the 3 point

method for all relative slopes.

Figures 15 anI 16 show the comparison for the stereo range

aystem at 4 and 20 meters respectively. At close range a 4 point 
fit

is much more accurate for positive relative in-path slopes. At 20 m

the four point stochastic estimate is considerably more accurate than

the three point calculation for all relative in-path slopes.

Since the calculation in the 3 point case is nearly as

complicated as the four point case and the resulting estimate of

gradient is much less accurate with a 3 point system,the four point
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stochastic estimate is clearly recomm'ended.

4. Standard Deviations in h',a'and bt

The standard deviations in hl,aand bmay be determined from

Eq. (15). Since these uncertainties are involved in the estimate of

the gradient a closer look at these parameters may explain some of

the results previously discussed. It is also possible that the path

selection algorithm may take height differences between data points

into account. 1 1

The standard deviation in the coordinate hlis plotted against

distance from the vehicle for the stereo angles system in Figure 17.

The value of L is one meter and its standard deviation is O.01m. The

terrain assumed is flat with zero height and no relative slope. Since

the critical height for path selection may be about .45 meter the

standard deviation in the height measurement should be no more than

a few centimeters. From the figure it is obvious that the angle standard

deviation should be about 1'. Reducing the quantity ( to 6" give little

improvement in the accuracy of the measurement of the coordinate h'.

Figure 18 shows the effects of the separation standard deviation on

the height uncertaintyh. In this case the terrain is again assumed

to be flat with zero height and no relative slope.

The standard deviation in the coordinate a'is slightly less

than the standard deviation in h' for all cases with the stereo angles

system. The standard deviation in bas shown in Figure 19, is very

large for the stereo angles system. The inaccuracy in the measurement

of the coordinate b' increases rapidly as distance from the vehicle

increases. If accurate discrete point locations are needed the stereo
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might be .restricted to use only at close range, say within 10-15 meters.

Heights of terrain other than zero have a noticeable but tolerable

effect on the measurement of h as shown in figure 20. This graph shows

the quantity h'vs.distance b for h'= +1, 0 and -1 meter when L =1.0m

OL= 0.01m and(A= 1'. The system is more accurate for positive heights

than for negative heights. The measurements of a'and b'are not sensitive

to the variation in height.

The stereo range system requires very good range accuracy to

obtain good h'coordinate accuracy as seen from Figure 21, standard

deviation in height h' vs. distance b . The separation uncertainty has

much less effect than the range uncertainty. To get accurate results

the range standard deviation must be 0.001 meter or less. Figure 22

shows the quantities a' and b' vs. distance for the stereo range

system. The accuracy in the a' coordinate is about the same as in the

h' coordinate because of the symmetry of the system. The standard

deviation (b' is small and should pose no problem for this system.

Figure 23 illustrates the effects of heights of terrain not equal to

zero on the accuracy of the sterec ran e system. The measurement of a'

is not sensitive to height variation..The measurements of the values

of h' and b' are slightly affected by terrain height variation.

The standard deviations in the coordinates h', a' and b' are

plotted versus distance from the vehicle for the non-stereo system in

Figures 24-26. This system differs from the stereo systems in that

when angle standard deviation is 1' the standard deviation in h' Th,

decreases considerably as the distance from the vehicle increases.

There is some threshold value for the quantitYQA between 1' and 10'
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above which this effect is reversed. At close range with angle standard

deviation equal to 11 the range uncertainty appears dominant. A value

of = 0.05m or less will give acceptable results in the measurement

of h' if the value = 1'. For the non-stereo system.the magnitude

of the standard deviation in the coordinate a' is always less than the

standard deviation in h'.

The standard deviation in the measurement of the b t coordinate

vs. distance from the vehicle is illustrated in Figure 25. The angular

standard deviation is 1' for the solid lines and 10' for the dotted

lines. The range standard deviation(f variG3from 0.01m to 0.10m. The

terrain is assumed to be flat with zero height. The uncertainty in b'

is approximately equal to the range standard deviation. Again the

measurements of a' and b' are not significantly influenced by changes

in the height h'. The effect of heights from + Inmeter to - 1 meter on

the quantitych, are shown in Figure 26. Angle standard deviation is

set at 1' and range standard deviation at 0.10m. As with the other

systems the effects of non-zero heights is acceptable.

The fact that the accuracy in the coordinate measurements

improves vwith increasing distance from the vehicle for the non-stereo

system explains why gradient estimates also improve with distance

for this system as shown in the literature.L21
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PART 5

CONCLUSIOTS

A procedure for estimating a state vector x from the relation

h = A x when h and A are stochastic measurements has been applied to

estimate the gradient of the terrain in the path of the Martian vehicle.

Four measurement points which do not lie on the same plane due to

terrain irregularities and measurement errors are employed to form

a least square estimate of the gradient. This least square estimate

has been found to be more accurate than'an estimate from only three

points which lie on the plane.

The standard deviation in the four point estimate of the

gradient depends on the distance of the four points from the vehicle,

the positions of the terrain points in relation to each other, the

gradient of the terrain and the measurement errors. Vehicle motion

effect on the standard deviation in gradient has been reduced to an

additive factor as a result of use of a rapid-scan laser.

The effects of the above factors on the quantity( are

shown in Figures 5-8 for a stereo angles measurement system which uses

3 angular measurements and in Figures 9-12 for a stereo Pange system

which uses 3 range measurements. A desired maximum allowable standard

deviation in gradient .has been set at 2 . These results are

summarized and compared with the non-stereo system which uses one range

and two angular measurements ~' n the following Table.

50
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TABLE

COMPARISON OF STEREO AND NON-STEREO

MEASURKhENTS USING FOUR POINT PLANE FITTING

SYSTEM MAX. RANGE MAX. ANGLE MAX. DISTANCE

STD. DEV. STD. DEV. L & J

R A STD. DEV.

L j

At 4 meters from the vehicle:

Stereo Range 0.001 meter 0.005 meter

Stereo Angles ----- 1 minute 0.001 meter

Non-stereo 0.01 meter 1 minute

At 20 meters from the vehicle:

Stereo Range 0.0005 meter 0.005 meter

Stereo. Angles 6 arc-sec. 0.001 meter

Non stereo 0.02-0.03 meter 1 minute

From the Table and the limits of present technology, the

non-stereo system appears much more practical than the stereo range

system. Laser rangefinder technology has not yet reduced range standard

deviation sR below 0.01 meter.(31 In fact, a more reasonable expectation

for range standard deviation may be from 0.02 to 0.05n.1121The results

for stereo range have been presented in anticipation of improvements

in rangefinder accuracy.



52

At longer range the non-stereo system is better than the

stereo angles system. At close range, stereo angles may be comparable

.to non-stereo if the standard deviation in the transmitter-receiver

separation L can be reduced to 0.001m. This conclusion is also based

on the.assumption that angle standard deviation will be about one minute

of arc.(31

Future research should consider the problem of coordinating

the gradient estimates of all the small terrain areas in front of the

vehicle. The problem of discrete obstacle detection or height dis-

continuities should also be analyzed. A complete path selection rule

should then be developed and tested. Other possibilities include

rearrangement of transmitter and receivers to improve.accuracy and

simplify operation of the obstacle detection system.
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APPENDIX A

Derivation of the Perturbation Equations

To prove the results in Eqs. (12) and (13) the h, a, b

coordinates are first perturbed as

Sh hhl h'

ia SC 6)B(5) al +C( )BJ) a' +C( )B() Ea

b b, I, bj I(A-1)

where

(-sin ) (-cosoio) 0 -sin -cos 0O

C= ( cosf) - coso -sin 0 = 01

0 0 0 0 0 (A-2)

and

(-sin ) 0 (C os I) (-sin ) 0 (cos "

B= b = 0 0 0 0 0 0 =B1

(-co ) O I (-Cos ) 0 (-sin (A-3)

For stereo angles

bLJ (A-)

where G is shown in Eq, (12b) in the text. The matrix G is obtained
a a

by taking the differentials of Eqs. (la-c) with respect to *,, ,and L.

For stereo range,M

Sa G r(MIIT,K,L,J) K
bl L

LJ (A-5)

where G is given in Eq. (13b) in the text. The matrix G is obtainedr r

from the differentials of Eqs. (4a-c) with respect to M,N,K,L,and J.
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Equations (A-2), (A-3) and (A-4) are substituted into (A-I) to obtain.:

Sh . h' .

a = CI ()B( ) a' : C(P)B( a) a' +C( )B(~)G C(,,,L)

*. b 
a

Lb' b (A-6) L Lj

Similarly, substitution of (A.2), (A-3) and (A-5) into (A-I) produces

a = c )B() B( ia C(O)BI(1) a +C( )B()Gr(M, N,K,L,J) SK/

(A-7)

Comparing the above with (12a) or (13a)

D(h' ,a' ,b'()B() a at

b b' (A-8)

The first term on the right is determined from (A-2) and (2c)

h -sino -cos O cos 0 sin
C 1B. at cos -sin.0 0 0 1 0 at

b. 0 0 0 -sini 0 cos I b'

-sin -cosv 0 h'cos +b'sin

= cos -sin O a'

0 0 0 hIsin +bscos

-h'sinO cosT -b'sin sinj -a'cos

h'cosa cos +b'cos? sin -a' sint

o 0 (A-9)

The second term of (A-8) is determined from (A-3) and (2b)

hl- cosO -sin 0' -sini 0 cos h

CBI, at = sin coso 0 0 0 0 a'

b 0 0 1 -cos 0 -sin b
cost -sino 0o -htsin +btcos1
sin cos o 0

0 0 1 -hIcos -b'sin
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-h'cos $ sin +b'cos/cos

-h' sih sin +b'sini cos

L-h'cosj -b'sin (A-10)

Substitution of (A-9) and (A-1O) into (A-8) gives

(-h'sin cos -a'cos -b'sin)sin')

D(h',a',b',~,) =b( h'cos cos -a'sin +blcos/sing)

0

(-htcos~sinj +b'cos~cos )1

(-h'sin sin +b' sind cos )

(-h'cosi -b'sin ) (A-11)

APPENDIX B

Derivation of the Covariance IMatrix of the Variables

Equation (12) is multiplied by its transpose to prove the

result shown in Eq. (16)

h [5h aa b] T/[a = D +CBG I D +CBeG
b LJL

= D DT + CBG L G aTBTCTa a

+CBGa D[' T + D ] L] G TBTCT

L (B-)

Expected values of (B-I) are taken to obtain

Y= h a b A CBGE 4L B T
a Fa
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+CBG E D + D G BC (B-2)
a La

Assuming that J<, 6I, ,L, L, (and S are uncorrelated, the last two

terms of (B-2) reduce to zero. Eq. (B-2) then becomes Eq. (16).

Similarly, Eq. (13) may be multiplied by its transpose to yield Eq. (17).

APPENDIX C

Derivation of the Slope Covariances

to prove Eqs. (21) and (22), (18b-d) are substituted into Eq. (18a)

to obtain

S+ ah = (A + A)(x + x) T= x + Ax + -X x +'Ax (C-1)

The second Order term SAgx may be neglected. Since h = Ax

Eq. (C-1) may be reduced to

Ax = h - .Ax

This relation is pre-multiplied by A to obtain

A = Ai (Sh -Sx)

Therefore the estimate of 5x becomes

= ( A)- 1 A (h Fx) = F(h - SA) (C-2)

This is equivalent to Eqd. (20) and (21)

The product of Eq. (C-2) and its transpose provides

T= F(Sh- SA)(h- AxTFT F[h hSh( A")h + x( Ax) F
(C-3)

Taking the expected value of Eq. (C-3) results in Eq.(22)

in the text.
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Eq. (23) may be substituted, etrm by term, into Eq.(22)

ET SA1 ax I x 2 1 x3]
( x) E E .T2 (C-4)

E(Ih hT) = hi h E(h 1)2 E(hl h2 )  E(hlSh n )

E(h h T ) = 1 E(ih l) E(Sh2) 2 E(h2h n )

E(Sh nh ) E(h Sh). ..E(Sh nh )

(0-5)

The different measurement points are uncorrelated. Therefore,

the off diagonal terms are equal to zero. Eq. (C-5) reduces to

E( h hT) = ".E E(S hn)2 (C-)

Similarly;

alx + Sb2 hO...Sh

E( - S hT = E

E( a1hl)X + E( 1 hl)x 2  O

O E(an hn)l + E(bn hi)x ()-7)

hn n n n 2 (C-7)
h I lx 1 b b12 )...(ganx + bx2

E Lh(%Ax) = E J
E(h 1 a)x 1 + E (hl b 1)x2 0

0 E( hn ga)x + E(h nbn

(c-8)



Eal 1 a +1 2 1. n2 +1b2n2 1

n1 n 2
2 2 2

0 E( an 2 + 2E(anbn )1X2 + E(b)n 2 2

(0-9)

The expected values in Eqs. (C-5) through (C-9) are calculated

from Eq. (16) or Eq. (17) in the text.


